Abstract

SummaryZero- to two-dimensional nanomaterials have been incorporated into metal-matrices to improve the strength of metals, but challengingly, high-volume-fraction nanomaterials are difficult to disperse uniformly in metal matrices, severely degrading the ductility of conventionally processed metals. Here, a considerably dense uniform dispersion of in situ formed nanoscale lamellar TiC reinforcement (16.1 wt %) in Ti matrix is achieved through laser-tailored 3D printing and complete reaction of Ti powder with a small amount (1.0 wt %) of carbon nanotubes (CNTs). An enhanced tensile strength of 912 MPa and an outstanding fracture elongation of 16% are simultaneously achieved for laser-printed components, showing a maximum 350% improvement in “product of strength and elongation” compared with conventional Ti. In situ nanoscale TiC reinforcement favors the formation of ultrafine equiaxed Ti grains and metallurgically coherent interface with minimal lattice misfit between TiC lamellae and Ti matrix. Our approach hopefully provides a feasible way to broaden structural applications of CNTs in load-bearing Ti-based engineering components via laser-tailored reorganization with Ti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.