Abstract

We embedded carbon nanotubes (CNTs) in mouse embryoid bodies (EBs) for modulating mechanical and electrical cues of the stem cell niche. The CNTs increased the mechanical integrity and electrical conductivity of the EBs. Measured currents for the unmodified EBs (hereafter, EBs) and the EBs-0.25mg/mL CNTs were 0.79 and 26.3mA, respectively, at voltage of 5V. The EBs had a Young's modulus of 20.9±6.5kPa, whereas the Young's modulus of the EB-0.1mg/mL CNTs was 35.2±5.6kPa. The EB-CNTs also showed lower proliferation and greater differentiation rates compared with the EBs as determined by the expression of pluripotency genes and the analysis of EB sizes. Interestingly, the cardiac differentiation of the EB-CNTs was significantly greater than that of the EBs, as confirmed by high-throughput gene analysis at day 5 of culture. Applying electrical stimulation to the EB-CNTs specifically enhanced the cardiac differentiation and beating activity of the EBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.