Abstract

The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT–COOH–CDDP) and free components (SWCNT–COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT–COOH (0.25–2 μg/mL), CDDP (0.158–1.26 μg/mL) and the same doses of SWNCT–COOH–CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT–COOH–CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT–COOH–CDDP proved enhanced anti-tumoral activity compared to free CDDP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.