Abstract
Variability in signaling pathway activation between neighboring epithelial cells can arise from local differences in the microenvironment, noisy gene expression, or acquired genetic changes. To investigate the consequences of this cell-to-cell variability in signaling pathway activation on coordinated multicellular processes such as morphogenesis, we use DNA-programmed assembly to construct three-dimensional MCF10A microtissues that are mosaic for low-level expression of activated H-Ras. We find two emergent behaviors in mosaic microtissues: cells with activated H-Ras are basally extruded or lead motile multicellular protrusions that direct the collective motility of their wild-type neighbors. Remarkably, these behaviors are not observed in homogeneous microtissues in which all cells express the activated Ras protein, indicating that heterogeneity in Ras activity, rather than the total amount of Ras activity, is critical for these processes. Our results directly demonstrate that cell-to-cell variability in pathway activation within local populations of epithelial cells can drive emergent behaviors during epithelial morphogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.