Abstract

Carbon nanotubes were grown on thermally oxidized porous silicon by catalytic chemical vapor deposition from the mixture of ferrocene and xylene precursor. The growth rate of carbon nanotubes showed dependence on the oxidation extent of porous silicon. On pristine porous silicon surfaces, only poor nanotube growth was observed, whilst samples oxidized in air at 200, 400, 600 and 800 °C prior to the deposition process proved to be suitable substrates for carbon nanotube synthesis. Networks of carbon tubes with diameter of ∼40 and ∼10 nm observed on the surfaces of samples were investigated by electron microscopy and by energy dispersive X-ray analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.