Abstract
In this study, a new composite (MWCNTs-CuNiFe2O4) prepared by loading magnetic CuNiFe2O4 particles onto carboxylated carbon nanotubes (MWCNTs) through co-precipitation was applied to remove oxytetracycline hydrochloride (OTC-HCl) in solution. The magnetic properties of this composite could address of the issue of difficulty associated with the separation of MWCNTs from mixtures when applied as an adsorbent. In addition to the good adsorption properties recorded for MWCNTs-CuNiFe2O4 towards OTC-HCl, this developed composite could be used to activate potassium persulfate (KPS) for an efficient degradation of OTC-HCl. The MWCNTs-CuNiFe2O4 was systematically characterized using Vibrating Sample Magnetometer (VSM), Electron Paramagnetic Resonance (EPR) and X-ray Photoelectron Spectroscopy (XPS). The influence of dose of MWCNTs-CuNiFe2O4, the initial pH, the amount of KPS and the reaction temperature on the adsorption and degradation of OTC-HCl by MWCNTs-CuNiFe2O4 were discussed. The adsorption and degradation experiments showed that MWCNTs-CuNiFe2O4 exhibited an adsorption capacity of 270 mg·g−1 for OTC-HCl with the removal efficiency 88.6% at 303 K (at an initial pH 3.52, 5 mg KPS, 10 mg composite, 10 mL reaction concentration 300 mg·L−1 of OTC-HCl). The Langmuir and Koble-Corrigan models were used to describe the equilibrium process while the Elovich equation and Double constant model were suitable to describe the kinetic process. The adsorption process was based on single-molecule layer reaction and non-homogeneous diffusion process. The mechanisms of adsorption were complexation and hydrogen bond whereas active species such as SO4‧-, ‧OH and 1O2 were confirmed to have played a major role in the degradation of OTC-HCl. The composite was also found to be very stable with good reusability property. These results confirm the good potential associated with the use of MWCNTs-CuNiFe2O4/KPS system for the removal of some typical pollutants from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.