Abstract

A direct electron transfer single wall carbon nanotube (SWNT)- based biofuel cell on a gold-coated porous silicon (pSi) substrate shows a peak power density of 12 microwatts/cm2 in 4 mM glucose (corresponding to normal blood sugar concentration) with an average power of 1 microwatt over 48 hours of operation. An interesting feature of this biofuel cell is that it can be re-activated to operate with an average power output of 1 microwatt/cm2 after storage for 3 months at 4 C. Gold particles were electrolessly self-assembled on each pSi substrate from HAuCl4 solution in alcohol after similarly depositing an adhesion-promoting Cr layer. The hierarchy of pores on pSi enables nanoscale transport during fuel cell operation via capillary and wicking effects. Carboxylated SWNTs were deposited by an electrophoretic process, followed by electrochemically-induced covalent immobilization of anodic glucose oxidase and cathodic laccase enzymes on the nanotubes to form the biofuel cell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.