Abstract

In this work, chemical vapor deposition using ethanol and FeMo catalysts at 600, 700, 800 and 900 °C was used to modify the surface of expanded vermiculite (EV). Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, Mössbauer spectra, N 2-BET surface areas, and carbon elemental analyses suggested that the FeMo catalyst promoted 2–3% growth of carbon in different forms, mainly nanofibers, on the EV surface. The amount of 2–3% carbon produced by ethanol/CVD process on EV produced a 500% increase in the absorption of soybean, diesel and engine oil, with a concomitant decrease on water absorption. These results were discussed in terms of a hydrophobization of the EV surface by the carbon structures and a “sponge-like” effect due to the entangled nanofibers structure, as it was observed by microscopy, and an increase of N 2-BET surface area from 3 m 2 g −1 for EV up to 21 m 2 g –1 for the ethanol CVD-treated EV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.