Abstract

Pyrolysis and in-line catalytic decomposition of plastic waste were performed for the production of carbon nanomaterials (CNMs) and hydrogen. A new catalyst, Ni-UGSO (Nickel-UpGraded Slug Oxide), was used in a continuous mode, and its activity was compared to that of a typical Fe/Al2O3 catalytic formulation. Moreover, the pyrolysis-catalysis of different plastics (virgin high-density polyethylene (HDPE), used HDPE, and mixed plastics) was studied to investigate the effect of the plastic type on the quantity and quality of the produced CNMs. Ni-UGSO exhibited the highest catalytic activity for the production of CNMs and H2 of the two formulations tested, with yields of 56.6 kg/100 kgplastic and 13.2 kmol/100 kgplastic, respectively. The high activity and performance of Ni-UGSO were attributed to the synergistic effect of the Ni and Fe in Ni-UGSO. Scanning transmission electron microscopy (STEM) results revealed that most of the produced carbon was in the form of carbon nanofilaments (CNFs) of different diameters, ranging from 8 to 90 nm. The use of mixed plastics as a feedstock decreased the yield of CNMs by 10 wt%, and a layer of amorphous carbon covered the CNFs. This layer is due to the presence of polystyrene (PS), polyethylene terephthalate (PET), and other contaminants in the feedstock. Raman spectroscopy showed that the CNFs produced from used HDPE had the highest intensity ratio G/D (1.13).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call