Abstract

The main subject of this research is the development of a suitable, efficient, and biocompatible carbon nanofiber-based catalytic system for the synthesis of coumarin and 1,2,4,5-tetra-substituted imidazoles. Brønsted acid carbon nanofiber/taurine catalyst was made during three steps: acid treatment, acylation, and then amination. The basic principles and general advantages of the synthesis method are elaborated. The acidity of the prepared nano-catalyst was investigated using the Hammet acidity technique and UV–Vis spectroscopy, and the H0 value for 5 × 10–2 mg/mL of CNF/T in 0.3 mM 4-nitroaniline solution was determined to be 1.47. The structure of the catalyst was successfully characterized using FT-IR, TGA, FESEM, XRD, TEM, EDX, EDS-MAP, BET, and XPS techniques. Here, we report the ability of carbon nanofiber/taurine as a Brønsted acid catalyst for the synthesis of coumarins and 1,2,4,5-tetra-substituted imidazole through a metal-free, cost-effective, and biocompatible multicomponent route. Among the advantages of this protocol are reaction time, excellent efficiency, reusability, and high activity of the catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call