Abstract

Bioactive imidazole derivative absorbs in the UV region at 305 nm. The interaction of imidazole derivative with nanoparticulate WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, ZrO 2 and Al 2 O 3 has been studied by UV-visible absorption, FT-IR and fluorescence spectroscopies. The imidazole derivative adsorbs strongly on the surfaces of nanosemiconductor, the apparent binding constants for the association between nanomaterials and imidazole derivative have been determined from the fluorescence quenching. In the case of nanocrystalline insulator, fluorescence quenching through electron transfer from the excited state of the imidazole derivative to alumina is not possible. However, a possible mechanism for the quenching of fluorescence by the insulator is energy transfer, that is, energy transferred from the organic molecule to the alumina lattice. Based on Forster’s non-radiation energy transfer theory, the distance between the imidazole derivative and nanoparticles (r 0 ~2.00 nm) as well as the critical energy transfer distance (R 0 ~1.70 nm) has been calculated. The interaction between the imidazole derivative and nanosurfaces occurs through static quenching mechanism. The free energy change (—G et ) for electron transfer process has been calculated by applying RehmWeller equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call