Abstract

We propose a novel methodology for developing experimentally informed structural models of disordered carbon molecular sieves. The hybrid reverse Monte Carlo simulation method coupled with wide-angle X-ray scattering experiments is used for constructing an atomistic level model of a representative sample of carbon molecular sieve film (CMS-F) synthesized in our laboratory. We found that CMS-F possesses a disordered matrix enriched with bended carbon chains and various carbon clusters as opposed to the turbostratic carbon or graphite-like microcrystals. The pore structure of CMS-F has a defected lamellar morphology of one-dimensional periodicity with narrow (∼0.4 nm) micropores. The model is applied to study adsorption properties of CMS-F with respect to adsorbates of practical interest, such as N2, H2, CO, and C6H6. Special attention is paid to the phase transformations in the course of adsorption. In particular, we show theoretically and confirm experimentally that nitrogen solidifies within CMS-F pores ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.