Abstract

Abstract The controlled synthesis of precise carbon nanostructures with high electron conductivity, high reaction activity, and structural stability plays a significant role in practical applications yet largely unmet. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and coordination polymers (CPs) as crystalline porous materials (CPMs) have shown extraordinary porosity, tremendous structural diversity, and highly ordered pores, offering a platform for precise controlled carbon materials (CMs) with regular porous structures and high performances. Some recent studies have shown that CMs derived from CPMs with high specific surface area, superior chemical stability, excellent electrical conductivity offer a great opportunity for electrochemical energy storage and conversion. In this review, we summarize recent milestones of CPMs derived CMs in the field of capacitive energy storage. We hope the more precise design and control at the atomic level of CPMs could provide us a constructive view of the structure-activity relationship between CMs and electrochemical capacitors, as well as future trends and prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call