Abstract

High-spatial resolution carbon isotope analyses of natural graphite using secondary ion mass spectrometry (SIMS), together with conventional mass spectrometry techniques, demonstrate isotopic heterogeneity within single graphite crystals precipitated from a partially melted metamorphic rock. SIMS 13C/12C measurements were calibrated using an internal graphite standard previously analyzed by conventional isotope ratio mass spectrometry, which gave a reproducibility of 0.3‰ (1σ) at a spatial resolution of 2–3 μm. This resolution helped to identify an unusual carbon isotope distribution in a single graphite crystal from a metapelitic leucosome, showing remarkable core to rim variations with sharp δ13C steps up to 10‰. The results suggest that the graphite crystal grew from one edge to other forming layers perpendicular to the c-axis. The sharp isotopic steps indicate the presence of disequilibrium carbon isotope zoning in graphite and points to the possible existence of carbon isotope sector zoning. Intra-crystalline carbon isotope disequilibrium in graphite is believed to have resulted from the difference in diffusivity between 12C and 13C in the growth medium to the interface of graphite precipitation in different growth sectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.