Abstract

The objective of this paper is to present a neural network (NN) model for the sustainable structural design optimization of rectangular reinforced concrete columns under biaxial bending and axial loading to minimize the embodied carbon from concrete and steel. Using the loading combination, height, and concrete class, the model predicts the section geometry and reinforcement ratio. To train the NN, a dataset of 195 million designs was generated with the OpenSees library following Eurocode. The dataset spans six concrete classes and five different column heights. Using the estimates of the embodied carbon for concrete and steel, the designs were evaluated and filtered before training. To illustrate the performance of our model, 30 columns for different loads, heights, and concrete classes were manually designed and compared with the NN output. The results showed a 24% average reduction of embodied carbon for the NN predicted designs. In addition, the manual process took approximately six minutes per design, while it took the NN 1.2 seconds for the same task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.