Abstract
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence, a process of electrification is involving all kind of vehicles with a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due to the combustion process. In this context, fuel cell powertrains are a more promising strategy, with respect to battery electric alternatives where productivity and endurance are crucial. It is important to replace internal combustion engines in those vehicles, such as the those in the sector of Non-Road Mobile Machinery. In the present paper, a preliminary analysis of a fuel cell powertrain for a telehandler is proposed. The analysis focused on performance, fuel economy, durability, applicability and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a simple power follower strategy was developed with the aim of reducing components degradation and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak power conditions and a typical real work scenario. The simulations’ results showed that the fuel cell powertrain was able to achieve almost the same performances without excessive stress on its components. Indeed, a degradation analysis was conducted, showing that the fuel cell system can achieve satisfactory durability. Moreover, a Well-to-Wheel approach was adopted to evaluate the benefits, in terms of greenhouse gases, of adopting the fuel cell system. The results of the analysis demonstrated that, even if considering grey hydrogen to feed the fuel cell system, the proposed powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road vehicles, even if a higher investment cost might be required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.