Abstract

ABSTRACT An improved shear-lag model is adopted in this paper to study the fiber pull-out by considering interface properties in a representative volume element (RVE). The surface roughness, represented by grooves distributed around the fiber, is introduced to analyze the influence of roughness on fiber pull-out comparing it with a round fiber. The influence of groove shapes is also discussed. The interfacial stiffness is introduced in the improved shear-lag model by the cohesive zone modeling to simulate a practical interface connection. To represent the residual stress in composites, a pressure load is added on the surface of the RVE to analyze its influence on the fiber pull-out. The results show that the proposed theory can accurately predict the stress distribution in the RVE. Furthermore, the maximum reaction force increases with an improvement in roughness and interfacial stiffness, while the pressure can improve the reaction force in the third stage of fiber pull-out process. The proposed theory can predict the stress field and fiber pull-out process accurately. It can improve the efficiency and effectivity of micro-experiment with the reference of theoretical results. The results obtained using the proposed theory in this research can also be useful for the design and analysis of composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.