Abstract

Due exceptional properties such as its high-temperature resistance, mechanical characteristics, and relatively lower price, the demand for carbon fiber has been increasing over the past years. The widespread use of carbon-fiber-reinforced polymers or plastics (CFRP) has attracted many industries. However, on the other hand, the increasing demand for carbon fibers has created a waste recycling problem that must be overcome. In this context, increasing plastic waste from the new 3D printing technology has been increased, contributing to a greater need for recycling efforts. This research aims to produce a recycled composite made from different carbon fiber leftover resources to reinforce the increasing waste of Polylactic acid (PLA) as a promising solution to the growing demand for both materials. Two types of leftover carbon fiber waste from domestic industries are handled: carbon fiber waste (CF) and carbon fiber-reinforced composite (CFRP). Two strategies are adopted to produce the recycled composite material, mixing PLA waste with CF one time and with CFRP the second time. The recycled composites are tested under tensile test conditions to investigate the impact of the waste carbon reinforcement on PLA properties. Additionally, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier-transformed infrared spectroscopy (FTIR) is carried out on composites to study their thermal properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.