Abstract

The aim of this research was to reduce and improve the brittleness and thermal properties of poly lactic acid (PLA), respectively. Epoxidized natural rubber (ENR) was used to enhance the toughness and rutile titanium dioxide (R-TiO2) as filler was also incorporated to improve the thermal properties of the PLA. 10wt% ENR with epoxidation contents of 25 mol% (ENR25) and 50 mol% (ENR50) and various R-TiO2contents (0-10 phr)were compounded with PLA by using a twin-screw extruder at 155-165°C and a rotor speed of 40 rpm. The pellets of blends were then formed a thin film using a cast film extruder machine and cooled down under air flow. Thermal and mechanical properties and morphology of PLA/ENR/R-TiO2thin film were investigated. The crystallinity of PLA was found to increase with addition of ENR. The mechanical properties of thin film showed that the ENR50 enhanced the elongation but reduced the tensile strength of PLA with addition of R-TiO2at 5 and 10 phr, respectively. The TGA indicated that the addition of 10 phr R-TiO2increased in the decomposition temperature at 5% weight loss (Td5%) of PLA/ENR film. Thus the thermal stability of PLA/ENR50 was found to improve with addition of R-TiO2. From morphology study, the ENR50 phase showed a good dispersion in the PLA matrix. In conclusion, the addition of ENR and R-TiO2was found to enhance both toughness and thermal stability of PLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call