Abstract

The development of hydrogen evolution reaction (HER) technology that operates stably in a wide potential of hydrogen (pH) range of electrolytes is particular important for large-scale hydrogen production. However, the rational design of low-cost and pH-universal electrocatalyst with high catalytic performance remains a huge challenge. Herein, Co2P nanoparticles strongly coupled with P-modified NiMoO4 nanorods are directly grown on nickel foam (NF) substrates through carbon layer encapsulation (denoted as C-Co2P@P-NiMoO4/NF) by hydrothermal, deposition, and phosphating processes. This novel kind of hierarchical heterojunction has abundant heterogeneous interfaces, strong electronic interactions, and optimized reaction kinetics, representing the highly-active pH-universal electrodes for HER. Remarkably, the C-Co2P@P-NiMoO4/NF catalyst shows excellent HER properties in acidic and basic electrolytes, where the overpotentials of 105 mV and 107 mV are applied to drive the current density of 100 mA cm−2. In addition, a low overpotential of 177 mV at 100 mA cm−2 along with high stability is realized in 1 M phosphate buffer solution (PBS), which is close to the state-of-the-art non-precious metal electrocatalysts. Our work not only provides a class of robust pH-universal electrocatalyst but also offers a novel way for the rational design of other heterogeneous materials bythe interface regulation strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.