Abstract

The effect of acclimating anaerobic granules from commercial bioreactors with different carbon/electron sources on their ability to reductively dechlorinate a tri-(2,3,4-CB) and heptachlorobiphenyl (2,2′,3,3′,4,5,6-CB) was studied. The anaerobic granules were first grown in upflow anaerobic sludge blanket (UASB) reactors fed with two different mixtures of carbon/electron sources, i.e., propionate/butyrate/methanol and formate/methanol. Differences in dechlorination patterns for 2,2′,3,3′,4,5,6-CB were observed in batch experiments inoculated with granules from these two sets of UASB reactors. Variation of the carbon/electron source, during the dechlorination process, had no effect on the dechlorination pathway, but the extents and rates of dechlorination were highest for ethanol and formate and lowest for pyruvate fed batches. Pre-acclimation of different anaerobic sludges to polychlorinated biphenyls (PCBs) shortened the lag period, but did not influence the PCB dechlorination pathway. This is the first time that similar acclimation conditions for several anaerobic microbial communities prior to inoculation were reported to yield similar substrate specificities for the reductive dechlorination of specific PCB congeners. This research demonstrates a successful strategy for the development of biocatalysts to serve as the inoculum of partially decontaminated sites in order to provide microorganisms with specificities complementary to those of naturally occurring dechlorinators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call