Abstract

The emergence of widespread microbial contamination and drug-resistant bacteria in the water environment poses a severe threat to public health. Photocatalysis is considered an efficient, energy-saving, and cost-effective disinfection strategy for effectively removing microbial contamination from water bodies. In this paper, a metal-free O-doped g-C3N4/carbon dots (O-CN/CDs) nanosheet photocatalysts are prepared in coordination with various modification strategies, which results in a considerable improvement in photocatalytic disinfection activity compared to bulk g-C3N4 (B-CN). First, O-doping and morphology modulation are achieved simultaneously with hydrothermal treatment, which not only hinders the recombination of photogenerated hole-electron pairs, but also enables the exposure of more active centers. Subsequently, loading of CDs onto O-CN nanosheets by electrostatic self-assembly increases the production of photogenerated hole-electron pairs by expanding the visible light absorption region and promoted the separation of photogenerated carriers by trapping photogenerated electrons. Interestingly, the loading of CDs changes the charge on the surface of the composite photocatalyst from negative to positive, making it easier for the active species to come in contact with bacteria, and thus improving bacterial disinfection performance. Under visible light irradiation, the inactivation efficiency of optimized O-CN/CDs against methicillin-resistant Staphylococcus aureus (MRSA) is log(C/C0) = 4.08, approximately 9 times higher than that of B-CN. The main active species inactivating bacteria are superoxide anions radicals (•O2–) and photogenerated holes, and their attack causes damage to the membrane wall structure and leakage of intracellular components. Additionally, the feasibility of the as-prepared photocatalysts in water disinfection in real environments was confirmed by photocatalytic disinfection experiments in successive recovery cycles and in practical lake water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call