Abstract

Aptamer has been proved to be an important probe for antibiotic detection. Here, the electrical signal was doubly amplified by the synergistic effect of C-WO3 and AuNPs. The probe structure has a specific recognition effect on tetracycline, which improves the selectivity and anti-interference of the sensor. With the assistance of BBD strategy, the experimental errors of the C-WO3@AuNPs aptasensor were reduced and the best conditions for its preparation were obtained. This was conducive to obtain the best electrical signal transmission capacity of the electrode, greatly improved the sensor sensitivity. Under this mechanism, the antibiotic sensor achieved a low detection range (0.1 nM–100 nM) and a low detection limit (4.8 × 10−2 nM). The sensor showed excellent selectivity even in the presence of coexisting pollutants. This work explored the mechanism of charge change and demonstrated the role of probes in antibiotic sensing, providing important prospects of future applications in electrochemical sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call