Abstract
Membranes with molecular-sized, high-density nanopores, which are stable under industrially relevant conditions, are needed to decrease energy consumption for separations. Interfacial polymerization has demonstrated its potential for large-scale production of organic membranes, such as polyamide desalination membranes. We report an analogous ultrafast interfacial process to generate inorganic, nanoporous carbon-doped metal oxide (CDTO) nanofilms for precise molecular separation. For a given pore size, these nanofilms have 2 to 10 times higher pore density (assuming the same tortuosity) than reported and commercial organic solvent nanofiltration membranes, yielding ultra-high solvent permeance, even if they are thicker. Owing to exceptional mechanical, chemical, and thermal stabilities, CDTO nanofilms with designable, rigid nanopores exhibited long-term stable and efficient organic separation under harsh conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.