Abstract

This paper presents fiber optical gas sensors based on nano-porous metal oxide functional materials for high-temperature energy applications. A solution-based approach was used to produce nano-porous functional metal oxide and their dopant variants as sensing films, which was integrated on high-temperature stable FBGs in D-shaped silica fibers and sapphire fibers. The Bragg grating peaks were used to monitor the refractive index change and optical absorption loss due to the redox reaction between Pd-doped TiO 2 and hydrogen from the room temperature to 800°C. The experimental results show the sensor's response is reversible for hydrogen concentration between 0.1 vol.% to 5 vol. %. The response time of the hydrogen sensor is <8s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.