Abstract

The response of mesothelial cells to surgical trauma and bacterial contamination is poorly defined. We have recently shown that CO(2) pneumoperitoneum increases systemic metastasis of neuroblastoma cells in a murine model. Thus, we hypothesized that CO(2) alters the morphology and function of mesothelial cells and facilitates transmesothelial tumor cell migration. Murine mesothelial cells were exposed to 100% CO(2) and 5% CO(2) as control. Scanning electron microscopy (SEM) investigations, as well as LPS-induced granulocyte-colony stimulating factor (G-CSF) production and mitochondrial activity (MTT assay) were measured. Transmesothelial migration of neuroblastoma cells (Neuro2a) was determined using a transwell chamber system. CO(2) incubation was associated with a significant destruction of the microvillar formation in SEM. Migration studies showed that the barrier function of the mesothelial monolayer decreased. A significantly increased migration of neuroblastoma cells was identified after 100% CO(2) exposure (P < 0.05). Although the conversion of MTT as an indicator of mitochondrial activity was only slightly and not significantly reduced after CO(2) incubation, the release of G-CSF induced by LPS was completely blocked during the incubation with 100% CO(2) (P < 0.05). The capacity of G-CSF release recovered after the incubation. We observed that peritoneal mesothelial cells lose their typical cell morphology by CO(2) incubation, which is accompanied by facilitated migration of neuroblastoma cells. Moreover, the synthesis of immunological factors is blocked, but this effect is not long lasting. These mechanisms may explain an increased metastasis rate of neuroblastoma cells after CO(2) pneumoperitoneum, which was recently observed in a murine model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.