Abstract

Nickel-based cermet anode can be operated in hydrogen and hydrocarbon-fuelled intermediate temperature solid oxide fuel cells (SOFCs). Nickel/zirconia co-doped with 10 mol% scandia and 1 mol% ceria (Ni/10Sc1CeSZ) has better electrochemical performance compared with the state-of-the art SOFC anode, Ni/yttria-stabilised-zirconia. In this study, nickel-metal/10 mol% scandia-1 mol% ceria-stabilised zirconia (Ni0.5M0.5/10Sc1CeSZ, M = Co, Cu and Fe) composite anode powders were synthesised via a single-step microwave-assisted glycine nitrate process. The phase identification and morphology of the prepared powder were investigated by X-ray diffraction and field-emission scanning electron microscopy, respectively. The carbon deposition properties of Ni/10Sc1CeSZ and Ni0.5M0.5/10Sc1CeSZ (M = Co, Cu and Fe) cermet anode in dry methane fuel were evaluated. Cermet anode powder was reduced under a mixture of hydrogen (10%) and nitrogen (90%) at 800 °C for 2 h prior to the carbon deposition test. In the carbon deposition test, the reduced cermet powder was exposed in dry methane atmosphere at 800 °C for 3 h. Overall, Ni0.5Cu0.5/10Sc1CeSZ cermet anode exhibits the highest intensity ratio of G/D (2.64) in Raman analysis, resulting in less amorphous carbon deposits. This study shows that copper metal substitution could suppress carbon deposition onto Ni/10Sc1CeSZ cermet, and this material can be used as an anode material for SOFCs that operate on dry methane fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.