Abstract
Modification of polymeric surface by plasma ions has perspectives in creating flexible functional materials; their deformation behavior is one of the most important properties, as poor fracture resistance cancels all advantages. Carbon ions were deposited on the surface of elastic polyurethane with subsequent argon treatment. Created carbon-containing nanolayer has increased wettability and nonuniform local mechanical properties. Uniaxial extension to strains >100% induces discontinuous microcracks of carbon-modified surfaces but their propagation is constrained by inhomogeneities of the modified layer. Argon post-treatment improves wettability further but makes local mechanical properties uniform that decreases the fracture resistance. Multi-cycle uniaxial loading to 50% doesn't damage the surface but forms in the modified layer weakened domains – precursors of failure; this improves crack resistance at strains >100% a mesh of disordered microcracks appears preventing propagation of long cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.