Abstract
This data article presents data collected from the 250 highest revenue retailers around the world, assessed according to publicly available data from the fiscal year 2016, in order to determine retailer׳s overall carbon intensity (CI) and energy intensity (EI). Data collection included additional variables such as retailers’ revenue rank, operational typology, number of stores, store sales area and number of workers. Based on this dataset, CI and EI benchmarks were calculated for food and non-food retailers, applying the statistic function first quartile (Q1) for the best practice, second (Q2) and third (Q3) quartiles for conventional practice and fourth quartile (Q4) for worst practice and correlations were tested between the variables "EI", "CI" and "retailer revenue", applying the statistic function CORREL (Ferreira et al., In press) [1]. Finally, a cluster analysis was performed for food and non-food retailers, to identify possible segmentation patterns between the variables “EI”, “CI” and “retailer revenue”. The information provided in this data article is useful for furthering research developments on the influence of isolated variables on retail EI and CI and in assisting retailers, architects, engineers, and policy makers in establishing optimal energy performance goals for the design and operation of retail stores. For further data interpretation and discussion, see the article “Combined carbon and energy intensity benchmarks for sustainable retail stores” (Ferreira et al., In press), of the same authors.
Highlights
This data article presents data collected from the 250 highest revenue retailers around the world, assessed according to publicly available data from the fiscal year 2016, in order to determine retailer's overall carbon intensity (CI) and energy intensity (EI)
Correlations were tested between the variables "EI", "CI" and "retailer revenue", applying the statistic function CORREL
A cluster analysis was performed for food and nonfood retailers, to identify possible segmentation patterns between the variables “EI”, “CI” and “retailer revenue”
Summary
This data article presents data collected from the 250 highest revenue retailers around the world, assessed according to publicly available data from the fiscal year 2016, in order to determine retailer's overall carbon intensity (CI) and energy intensity (EI). Correlations were tested between the variables "EI", "CI" and "retailer revenue", applying the statistic function CORREL.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have