Abstract

Finishing coatings used in the wood-based composite industry play a key role in the final appearance of the finished product. However, the use of such coatings is not only for aesthetic purposes, but also to protect the product against surface damage and moisture or to minimize the emission of harmful substances. The latter is an extremely important factor in terms of safety for both the manufacturer and the user, which is why the emissivity test is one of the most important tests conducted in this case. Carbon-rich materials, such as those remaining from the extraction of birch bark, can fulfill the role of minimizing the emission of harmful substances. In this article, an attempt to create coatings in the form of a film by combining a biopolymer with suberinic acid residues (SARs) was made. Two types of biopolymers were used, polylactide (PLA) and polycaprolactone (PCL), in various polymer–SAR ratios. Suberinic acid as a residue is a raw material that can potentially contribute positively to the fixing of CO2 from the atmosphere, which creates the possibility for further use. As part of this study, the obtained coatings were tested in terms of scratch resistance, relative hardness, cold liquids, total volatile organic compounds (TVOCs), formaldehyde emission, surface absorption, etc. Differences between the polymers used and the effect of the SAR additive on selected surface properties were demonstrated. The addition of carbon-rich SAR significantly improves gas barrier properties of the PLA- and PCL-based surface finishing materials. The relative hardness and scratch resistance also increased with rising SAR content. However, the increasing content of SAR filler acts as a limiter in the depth of penetration of the deposited surface finishing materials onto the wood surface. It is possible to state that this innovative approach regarding (1) the utilization of biopolymers as a matrix, instead of conventional, crude oil-based resins, and (2) the incorporation of post-processed carbon-rich waste lignocellulosic materials to produce the surface finishing and/or protective films has been confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.