Abstract
Grasslands are an important component of the global carbon balance, but their carbon storage potential is still highly uncertain. In particular, the impact of weather variability and management practices on grassland carbon budgets need to be assessed. This study investigated the carbon balance of an intensively managed permanent grassland and its uncertainties by drawing together 5 years of eddy covariance measurements and other organic carbon exchanges estimates. The results showed that, despite the high stocking rate and the old age of the pasture, the site acted as a relatively stable carbon sink from year to year, with a 5-year average net biome productivity of −161 [−134 −180]gCm−2yr−1. Lateral organic carbon fluxes were found to increase the carbon sink because of high carbon imports (organic fertilization, feed complements) and low carbon exports in form of meat compared to dairy pastures. The cattle stocking density was adapted to grass production, which itself depends on weather conditions and photosynthesizing area, in order to maintain a steady meat production. This resulted in a coupling between grazing management and weather conditions. As a consequence, both weather and grazing impacts on net ecosystem exchange were difficult to distinguish. Indeed, no correlation was found between weather variables anomalies and net ecosystem exchange anomalies. This coupling could also partly explain the low C budget inter-annual variability. The findings in this study are in agreement with those reported by other studies that have shown that well-managed grasslands could act as carbon sinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.