Abstract

In this report, we investigated the cytotoxicity of two types of quantum dots(QDs) (carbon quantum dots(CQDs): N, S doped CQDs, N doped CQDs, no doped CQDs; metal QDs(MQDs): CdTe QDs, CdS QDs, CuInS2/ZnS QDs) on Chlorella pyrenoidosa(C. Pyrenoidosa) at different concentrations. We compared the toxicity of different QDs on C. Pyrenoidosa through determination of the algal growth inhibition, acute toxicity tests (EC50), Chlorophyll a(Chla) contents, protein contents, the activity of enzymatic and metabolites contents. When C. Pyrenoidosa was treated by various concentrations of QDs, the Chla contents were consistent to the number of algae cells, showing a good dose-response relationship. At the 96h, the EC50 of N, S doped CQDs, N doped CQDs, no doped CQDs and CdTe QDs, CdS QDs, CuInS2/ZnS QDs were 38.56, 185.83, 232.47, 0.015, 4.88, 459.5mg/l, respectively. The toxicity order of them was: CuInS2/ZnS QDs<no doped CQDs<N doped CQDs<N,S doped CQDs<CdS QDs<CdTe QDs. The activity of antioxidant enzymatic superoxide dismutase (SOD) was enhanced and the non-enzymatic antioxidant glutathion (GSH) level was decreased with the increasing of QDs concentration, respectively. The accumulation of Malondialdehyde (MDA), a product of lipid peroxidation caused by reactive oxygen species(ROS), was enhanced when algae were exposed to QDs. In conclusion, the toxicity of CQDs was smaller than MQDs, but the toxicity of CuInS2/ZnS QDs was the smallest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call