Abstract
Carbon aerogels, based on resorcinol and formaldehyde precursors and prepared by supercritical drying and high-temperature carbonization, are nanostructured carbons. Carbon aerogels have very low thermal conductivity due to their nanosized pores and particle structures; thus, they are promising as applicants in high-temperature insulation applications. It is well known that the thermal conductivity of carbon aerogels is composed of many components and influenced by many factors, and this review discusses the heat transfer mechanisms of the carbon aerogels. The synthesis procedures of the carbon aerogels were also reviewed. Moreover, the weak mechanical properties of pristine carbon aerogels limit their applications; therefore, it is necessary to strengthen the carbon aerogels and improve their mechanical properties. The reinforced carbon aerogels were introduced and reviewed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have