Abstract

A novel method for monitoring proton-deuteron (H/D) exchange at backbone amides is based on the observation of H/D isotope effects on the (13)C NMR signals from peptide carbonyls. The line shape of the carbonyl (13)C(i) signal is influenced by differential H/D occupancy at the two adjacent amides: the H(N)(i)(+1) (beta site) and the H(N)(i) (gamma site). At a carbon frequency of 75.4 MHz, the H --> D isotope shifts on the (13)C signal are about 5-7 Hz for exchange at the beta site and 2 Hz or less for exchange at the gamma site. Because the effects at the two sites are additive, the time dependence of the line shape of a particular carbonyl resonance can report not only the exchange rates at the individual sites but also the level of dual exchange. Therefore, the data can be analyzed to determine the rate (k(c)) and degree of correlated exchange (X(betagamma)) at the two sites. We have applied this approach to the investigation of the pH dependence of hydrogen exchange at several adjacent residues in Streptomyces subtilisin inhibitor (SSI). Two selectively labeled SSI proteins were produced: one with selective (13)C' labeling at all valyl residues and one with selective (13)C' labeling at all leucyl residues. This permitted the direct observation by one-dimensional (13)C NMR of selected carbonyl signals from residues with slowly exchanging amides at the i and i + 1 positions. The residues investigated were located in an alpha helix and in a five-stranded antiparallel beta sheet. Samples of the two labeled proteins were prepared at various pH values, and (13)C NMR spectra were collected at 50 degrees C prior to and at various times after transferring the sample from H(2)O to (2)H(2)O. Most of the slowly exchanging amides studied were intramolecular hydrogen-bond donors. In agreement with prior studies, the results indicated that the exchange rates of the amide hydrogens in proteins are governed not only by hydrogen bonding but also by other factors. For example, the amide hydrogen of Thr34 exchanges rapidly even though it is an intramolecular hydrogen-bond donor. Over nearly the whole pH range studied, the apparent rates of uncorrelated exchange (k(beta) and k(gamma)) were proportional to [OH(-)] and the apparent rates of correlated exchange at two adjacent sites (k(c)) were roughly proportional to [OH(-)](2). This enabled us to extract the pH-independent exchange rates (k(beta) degrees , k(gamma) degrees , and k(c) degrees ). In all cases in which correlated exchange could be measured, the observed sigmoidal pH dependence of X(betagamma) could be replicated roughly from the derived pH-independent rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.