Abstract
Prolonged low-frequency force depression (PLFFD) induced by fatiguing exercise is characterized by a persistent depression in submaximal contractile force during the recovery period. Muscle glycogen depletion is known to limit physical performance during prolonged low- and moderate-intensity exercise, and accelerating glycogen resynthesis with post-exercise carbohydrate intake can facilitate recovery and improve repeated bout exercise performance. Short-term, high-intensity exercise, however, can cause PLFFD without any marked decrease in glycogen. Here, we studied whether recovery from PLFFD was accelerated by carbohydrate ingestion after 60minutes of moderate-intensity glycogen-depleting cycling exercise followed by six 30-seconds all-out cycling sprints. We used a randomized crossover study design where nine recreationally active males drank a beverage containing either carbohydrate or placebo after exercise. Blood glucose and muscle glycogen concentrations were determined at baseline, immediately post-exercise, and during the 3-hours recovery period. Transcutaneous electrical stimulation of the quadriceps muscle was performed to determine the extent of PLFFD by eliciting low-frequency (20Hz) and high-frequency (100Hz) stimulations. Muscle glycogen was severely depleted after exercise, with a significantly higher rate of muscle glycogen resynthesis during the 3-hours recovery period in the carbohydrate than in the placebo trials (13.7 and 5.4mmol glucosyl units/kg wet weight/h, respectively). Torque at 20Hz was significantly more depressed than 100Hz torque during the recovery period in both conditions, and the extent of PLFFD (20/100Hz ratio) was not different between the two trials. In conclusion, carbohydrate supplementation enhances glycogen resynthesis after glycogen-depleting exercise but does not improve force recovery when the exercise also involves all-out cycling sprints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scandinavian journal of medicine & science in sports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.