Abstract

Molecular dynamics (MD) simulations combined with water-water H-bond angle analysis and calculation of solvent accessible surface area and approximate free energy of solvation were used to determine the influence of hydroxyl orientation on solute hydration and surrounding water structure for a group of chemically identical solutes-the aldohexopyranose sugars. Intramolecular hydrogen bond cooperativity was closely associated with changes in water structure surrounding the aldohexopyranose stereoisomers. The OH-4 group played a pivotal role in hydration as it was able to participate in a number of hydrogen bond networks utilizing the OH-6 group. Networks that terminated within the molecule (OH-4 --> OH-6 --> O-5) had relatively more nonpolar-like hydration than those that ended in a free hydroxyl group (OH-6 --> OH-4 --> OH-3). The OH-2 group modulated the strength of OH-4 networks through syndiaxial OH-2/4 intramolecular hydrogen bonding, which stabilized and induced directionality in the network. Other syndiaxial interactions, such as the one between OH-1 and OH-3, only indirectly affected water structure. Water structure surrounding hydrogen bond networks is discussed in terms of water-water hydrogen bond populations. The impact of syndiaxial versus vicinal hydrogen bonds is also reviewed. The results suggest that biological events such as protein-carbohydrate recognition and cryoprotection by carbohydrates may be driven by intramolecular hydrogen bond cooperativity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call