Abstract

Computational analyses, using primarily density functional theory, have been used to determine the stabilization associated with the carbocation-π interaction of a biochemical carbocation intermediate binding to a phenylalanine residue in an enzyme active site. Studies of complexation between t-butyl cation and ethylbenzene, and of a model of a carbocation intermediate with a phenylalanine in the active site of geranyl diphosphate C-methyl transferase, have afforded the first quantitative evaluation of the stabilization that can be provided to a carbocation by an aromatic residue in an enzymatic reaction. Describing the hydrophobic surrounding medium using a dielectric constant between ε = 2 and ε = 4, the calculated carbocation-π stabilization energy lies in the range of 10-7.5 kcal mol-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.