Abstract

The carbide dispersion carburizing process was applied to Fe-based high-speed steels, which contained multiple carbide-forming elements, Mo and V. Fine carbides precipitated during the carburization and the dispersed particles in the Fe–Mo–V–C alloys heat-treated at 1 200°C were identified as VC, (Mo, V)2C, and (Fe ,Mo)6C, which behave as effective inhibitors against the grain growth of austenite and as reinforcers resulting in increased hardness of the martensitic matrix. The maximum Vickers hardness of the Fe–10Mo–5V–2.05C alloy quenched from 1 200°C and tempered at 600°C achieved values of 1 100 and 1 000, respectively. Thermodynamic calculation of the Fe–Mo–V–C quaternary system proved to be useful for optimizing the composition of carbide forming elements, the carburizing conditions, and the microstructure of carburized and solution-treated alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call