Abstract

Five carbazole-based donor molecules are designed by structural engineering of reference molecule PF. The molecules are devised by substitution of thiophene bridged end-capped acceptor groups namely (2-methylenemalononitrile) PF1, (methyl 2-cyanoacrylate) PF2, (3-methyl-5-methylene-2-thioxothiazolidin-4-one) PF3, (2-(3-methyl-5-methylene-4-oxothiazolidin-2- ylidene) malononitrile) PF4, and (4-(5-methylthiophen-2-yl) benzo[c] [1, 2, 5] thiadiazol) PF5. A DFT investigation was performed at the selected DFT functional MPW1PW91/6-31G (d,p) to investigate the optoelectronic properties of PF and all designed (PF1-PF2) molecules. Several important characteristics, i.e., band gap (Eg), transition density matrix analysis, dipole moment (µ), density of states analysis, reorganization energies, open circuit voltage (Voc), and fill factor, were investigated. The comparison of energy levels of reference molecule and designed molecules unveils the fact that these molecules are efficient hole transport materials to be used in perovskite solar cells (PSCs). All the newly drafted molecules (PF1-PF5) show higher λmax values in solvent (Chlorobenzene) ranging from 529 to 614nm than the reference PF (344nm). Smaller band gap (Eg) values in a range of 2.27-1.9eV for newly designed molecules are observed which are very much reduced when compared to reference PF. Lowered exciton binding energies (Eb) and reorganization energies for the electron (0.004279-0.0103337eV) as compared to PF reveal that our molecules display higher electron mobility rates, and hence, these small molecules can be used as proficient donor materials in high-performance organic solar cells (OSCs) and better hole transport materials (HTMs) for possible application in perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.