Abstract

This paper proposes a specialized memory structure called CA-RAM (content addressable random access memory) to accelerate search operations present in many important real-world applications. Search operations can occupy a significant portion of total execution time and energy consumption, while posing a difficult performance problem to tackle using traditional memory hierarchy concepts. In essence, CA-RAM is a direct hardware implementation of the well-known hashing technique. Searchable records are stored in CA-RAM at a location determined by a hash function, defined on their search key. After a database has been built, looking up a record in CA-RAM typically involves a single memory access followed by a parallel key matching operation. Compared with a conventional CAM (content addressable memory) solution, CA-RAM capitalizes on dense SRAM and DRAM designs, and achieves comparable search performance while occupying much smaller area and consuming significantly less power. This paper presents detailed design aspects of CA-RAM, to be integrated in future general-purpose and application-specific processors and systems. To further motivate and justify our approach, we present two real examples of using CA-RAM to build a high-performance search accelerator targeting: IP address lookup in core routers and trigram lookup in a large speech recognition system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.