Abstract

Purpose In the research of stock market efficiency, it is argued that the stock market moves randomly and absorbs all the available information. As a result, it is quite impossible to make predictions about the possible future movement by the investors. But literatures have detected certain calendar anomalies where a day(s) in a week or month(s) in a year or a particular event in a year becomes conducive for investors to earn more than the normal. Hence, the purpose of this study is to find out the month of the year effect in the Indian stock market. Design/methodology/approach In this study, daily time series data of Sensex and Nifty from 1996 to 2021 is used. The study uses month dummies to capture the effect. Different variants of generalised autoregressive conditional heteroskedasticity (GARCH) models, both symmetric and asymmetric, are used in the study to model the conditional volatility in the presence month effect. Findings This study found the September effect in the return series of both the stock market. Apart from that, asymmetric GARCH models are found to be the best fit model to estimate conditional volatility. Originality/value This study is an endeavour to study month of the year effect in the Indian context. This research will provide valuable insight for studying the different calendar anomalies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.