Abstract

We investigate the prospects for joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). For BNS mergers associated with short duration gamma-ray bursts (SGRBs), we for the first time evaluate the feasibility of rapid EM follow-ups to capture the prompt emission, early engine activity or reveal any potential by-products such as magnetars or fast radio bursts. To achieve our goal, we first simulate a population of coalescing BNSs using realistic distributions of source parameters and estimate the detectability and localisation efficiency at different times before merger. We then use a selection of facilities with GW follow-up agreements in place, from low-frequency radio to high energy $\gamma$-ray to assess the prospects of prompt follow-up. We quantify our assessment using observational SGRB flux data extrapolated to be within the horizon distances of the advanced GW interferometric detectors LIGO and Virgo and to the prompt phase immediately following the binary merger. Our results illustrate that while challenging, breakthrough multi-messenger science is possible with EM follow-up facilities with fast responses and wide fields-of-view. We demonstrate that the opportunity to catch the prompt stage ($<$ 5s) of SGRBs, can be enhanced by speeding up the detection pipelines of both GW observatories and EM follow-up facilities. We further show that the addition of an Australian instrument to the optimal detector network could possibly improve the angular resolution by a factor of two and thereby contribute significantly to GW-EM multi-messenger astronomy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.