Abstract
Binary neutron star mergers are strong gravitational wave (GW) sources and the leading candidates to interpret short duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the X-ray plateau followed by a steep decay as observed in SGRB X-ray light curves marks the collapse of a supra-massive neutron star to a black hole (BH), we use the statistical observational properties of {\em Swift} SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already put following interesting constraints: 1) A neutron star EoS with a maximum mass close to a parameterization of $M_{\rm max} = 2.37\,M_\odot (1+1.58\times10^{-10} P^{-2.84})$ is favored; 2) The fractions for the several outcomes of NS-NS mergers are as follows: $\sim40\%$ prompt BHs, $\sim30\%$ supra-massive NSs that collapse to BHs in a range of delay time scales, and $\sim30\%$ stable NSs that never collapse; 3) The initial spin of the newly born supra-massive NSs should be near the breakup limit ($P_i\sim1 {\rm ms}$), which is consistent with the merger scenario; 4) The surface magnetic field of the merger products is typically $\sim 10^{15}$ G; 5) The ellipticity of the supra-massive NSs is $\epsilon \sim (0.004 - 0.007)$, so that strong GW radiation is released post the merger; 6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several $10^{49}$ erg to several $10^{52}$ erg, since a good fraction of spin energy is either released in the form of GW or falls into the black hole as the supra-massive NS collapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.