Abstract

SummaryDisease prevalence in wildlife is governed by epidemiological parameters (infection and recovery rates) and response to infection, both of which vary within and among individual hosts. Studies quantifying these individual‐scale parameters and documenting their source of variation in wild hosts are fundamental for predicting disease dynamics. Such studies do not exist for the influenza A virus (IAV), despite its strong impact on the global economy and public health.Using capture–recaptures of 3500 individual mallardsAnas platyrhynchosduring seven migration seasons at a stopover site in southern Sweden, we provide the first empirical description of the individual‐based mechanisms ofIAVdynamics in a wild reservoir host.For most years, prevalence and risk ofIAVinfection peaked at a single time during the autumn migration season, but the timing, shape and intensity of the infection curve showed strong annual heterogeneity. In contrast, the seasonal pattern of recovery rate only varied in intensity across years.Adults and juveniles displayed similar seasonal patterns of infection and recovery each year. However, compared to adults, juveniles experienced twice the risk of becoming infected, whereas recovery rates were similar across age categories. Finally, we did not find evidence that infection influenced the timing of emigration.Synthesis and applications. Our study provides robust empirical estimates of epidemiological parameters for predicting influenza A virus (IAV) dynamics. However, the strong annual variation in infection curves makes forecasting difficult. Prevalence data can provide reliable surveillance indicators as long as they catch the variation in infection risk. However, individual‐based monitoring of infection is required to verify this assumption in areas where surveillance occurs. In this context, monitoring of captive sentinel birds kept in close contact with wild birds is useful. The fact that infection does not impact the timing of migration underpins the potential for mallards to spread viruses rapidly over large geographical scales. Hence, we strongly encourageIAVsurveillance with a multistate capture–recapture approach along the entire migratory flyway of mallards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call