Abstract

Influenza A virus (IAV) in wild bird reservoir hosts is characterized by the perpetuation in a plethora of subtype and genotype constellations. Multiyear monitoring studies carried out during the last two decades worldwide have provided a large body of knowledge regarding the ecology of IAV in wild birds. Nevertheless, other issues of avian IAV evolution have not been fully elucidated, such as the complexity and dynamics of genetic interactions between the co-circulating IAV genomes taking place at a local-scale level or the phenomenon of frozen evolution. We investigated the IAV diversity in a mallard population residing in a single pond in the Czech Republic. Despite the relative small number of samples collected, remarkable heterogeneity was revealed with four different IAV subtype combinations, H6N2, H6N9, H11N2, and H11N9, and six genomic constellations in co-circulation. Moreover, the H6, H11, and N2 segments belonged to two distinguishable sub-lineages. A reconstruction of the pattern of genetic reassortment revealed direct parent-progeny relationships between the H6N2, H11N9 and H6N9 viruses. Interestingly the IAV, with the H6N9 subtype, was re-detected a year later in a genetically unchanged form in the close proximity of the original sampling locality. The almost absolute nucleotide sequence identity of all the respective genomic segments between the two H6N9 viruses indicates frozen evolution as a result of prolonged conservation in the environment. The persistence of the H6N9 IAV in various abiotic and biotic environmental components was also discussed.

Highlights

  • Influenza A virus (IAV) is a member of the genus Orthomyxoviridae with a genome composed of eight distinct negative-sense RNA segments

  • Contrary to the IAV prevalence and subtype variety reported in the monitoring studies, only a few projects were focused on revealing the subtype diversity, genomic complexity, and dynamics of genetic interactions between the viruses occurring at the local-scale level, i.e. in the wild bird population residing in a single locality or in a single pond [10,11,12]

  • Subsequent analysis revealed the presence of three different IAV subtypes: H6N2 (14K, 17K, 23K), H11N9 (25K), and H11N2 (12K)

Read more

Summary

Introduction

Influenza A virus (IAV) is a member of the genus Orthomyxoviridae with a genome composed of eight distinct negative-sense RNA segments. The segmented genome and the lack of proofreading activity of the virus RNA polymerase provide a basis for extreme genetic diversity. Monitoring studies carried out during the last two decades provided a large body of knowledge regarding the ecology of IAV in wild birds. Contrary to the IAV prevalence and subtype variety reported in the monitoring studies, only a few projects were focused on revealing the subtype diversity, genomic complexity, and dynamics of genetic interactions between the viruses occurring at the local-scale level, i.e. in the wild bird population residing in a single locality or in a single pond [10,11,12]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.