Abstract
Abstract Recent evidence suggests that a portion of the Canary plume travelled northeastwards below the lithosphere of the Atlas Mountains in North Africa towards the Alboran domain and was captured ∼10 Ma ago by the Gibraltar subduction system in the Western Mediterranean. The capture would have been associated with the mantle return flow induced by the westward-retreating slab that would have dragged and trapped a portion of the plume material in the mantle wedge of the Gibraltar subduction zone. Such material eventually contaminated the subduction related volcanism in the Alboran region. In this work, we use scaled analogue models of slab–plume interaction to investigate the plausibility of the plume capture. An upper-mantle-scaled model combines a narrow (400 km) edge-fixed subduction plate with a laterally offset compositional plume. The subduction dominated by slab rollback and toroidal mantle flow is seen to increasingly impact on the plume dynamics as the area of influence of the toroidal flow cells at the surface is up to 500 × 1350 km2. While the plume head initially spreads axisymmetrically, it starts being distorted parallel to the plate in the direction of the trench as the slab trench approaches the plume edge at a separation distance of about 500 km, before getting dragged towards mantle wedge. When applied to the Canary plume–Gibraltar subduction system, our model supports the observationally based conceptual model that mantle plume material may have been dragged towards the mantle wedge by slab rollback-induced toroidal mantle flow. Using a scaling argument for the spreading of a gravity current within a channel, we also show that more than 1500 km of plume propagation in the sublithospheric Atlas corridor is dynamically plausible.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have