Abstract

Capsaicin (CAP) is a principal pungent ingredient in hot peppers, it is also employed as a common food additive, an efficient pharmaceutical component, or even a riot control agent. CAP exerts various pharmacological activities as well as associated adverse physiological responses and causes moderate toxicity if overused. A full screening and identification of CAP metabolites in combination with its main detoxification pathways are crucial for the clear demonstration on its pharmacological and toxicological significance. Here, we employed a post-acquisition data-mining metabolic screening approach to rapidly find and identify a broad range of CAP metabolites generated from in vitro human liver microsomes, based on an ultra-performance liquid chromatography-quadrupole orbitrap high resolution tandem mass spectrometric method. First, we collected full scan MS and MS/MS data sets by a data-dependent acquisition method in positive ion mode, and then we employed a modified mass defect filter and a diagnostic ion filter to screen and identify all the probable CAP metabolites, combining with information including retention time, accurate mass, characteristic fragments, and relevant drug biotransformation patterns. In comparison with the stable isotope-labeled CAP involved biotransformation products, we confirmed 19 functionalized metabolites and 13 glutathione (GSH) conjugates of CAP, in which 13 metabolites are reported for the first time. We then briefly depicted an overview metabolic pathway of CAP from the GSH detoxification viewpoint, revealed that various metabolites of CAP can be generated from single or multiple biotransformation and metabolic reactions. Both CAP and its reactive metabolites produced relevant GSH conjugates, which indicates a wide and important detoxification value of GSH conjugation way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call