Abstract

The aim of this study was to differentiate the processing of nociceptive information, matched for pain intensity, from capsaicin-induced hyperalgesic vs. control skin at multiple levels in the trigeminal nociceptive pathway. Using an event-related fMRI approach, 12 male subjects underwent three functional scans beginning 1 h after topical application of capsaicin to a defined location on the maxillary skin, when pain from capsaicin application had completely subsided. Brush and two levels of painful heat (low—Thermal-1 and high—Thermal-2) were applied to the site of capsaicin application and to the mirror image region on the opposite side. Temperatures for each side were set to evoke perceptually matched pain (mean temperatures [capsaicin/control]: Thermal-1 = 38.4/42.8 °C; Thermal-2 = 44.9/47.8 °C). We found differences in activation patterns following stimuli to treated and untreated sides in sensory circuits across all stimulus conditions. Across the trigeminal nociceptive pathway, Thermal-2 stimulation of hyperalgesic skin evoked greater activation in trigeminal ganglion and nucleus, thalamus, and somatosensory cortex than the control side. Thus, trigeminal nociceptive regions showed increased activation in the context of perceptually equal pain levels. Beyond these regions, contrast analyses of capsaicin vs. control skin stimulation indicated significant changes in bilateral dorsolateral prefrontal cortex and amygdala. The involvement of these emotion-related regions suggests that they may be highly sensitive to context, such as prior experience (application of capsaicin) and the specific pain mechanism (hyperalgesic vs. normal skin).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.