Abstract

In this paper, we theoretically consider the process of the capillary thinning of a polymer fluid thread bridging two large immobile droplets in the regime of highly stretched polymer chains. We first derive a new relation between the pressure p and the flow velocity v in unentangled polymer solutions, which is called the anti-Bernoulli law: it shows that p is higher where v is faster. Using this equation, it is shown that the flow field is asymptotically irrotational, in particular, in the thread/droplet transition zones (in the case, the negligible solvent viscosity and inertial effects). On this basis, we predict the free surface profile and the thread thinning law for the FENE-P model of polymer dynamics. The predictions are compared with recent theoretical results and some experimental data on capillary thinning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call