Abstract

In this paper, we theoretically consider the process of the capillary thinning of a polymer fluid thread bridging two large immobile droplets in the regime of highly stretched polymer chains. We first derive a new relation between the pressure p and the flow velocity v in unentangled polymer solutions, which is called the anti-Bernoulli law: it shows that p is higher where v is faster. Using this equation, it is shown that the flow field is asymptotically irrotational, in particular, in the thread/droplet transition zones (in the case, the negligible solvent viscosity and inertial effects). On this basis, we predict the free surface profile and the thread thinning law for the FENE-P model of polymer dynamics. The predictions are compared with recent theoretical results and some experimental data on capillary thinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.