Abstract
Recent progress in top-down proteomics has driven the demand for chromatographic methods compatible with mass spectrometry (MS) that can separate intact proteins. Hydrophilic interaction liquid chromatography (HILIC) has recently shown good potential for the characterization of glycoforms of intact proteins. In the present study, we demonstrate that HILIC can separate a wide range of proteins exhibiting orthogonal selectivity with respect to reversed-phase LC (RPLC). However, the application of HILIC to the analysis of low abundance proteins (e.g., in proteomics analysis) is hampered by low volume loadability, hindering down-scaling of the method to column diameters below 2.1 mm. Moreover, HILIC-MS sensitivity is decreased due to ion suppression from the trifluoroacetic acid (TFA) often used as the ion-pair agent to improve the selectivity and efficiency in the analysis of glycoproteins. Here, we introduce a capillary-based HILIC-MS method that overcomes these problems. Our method uses RPLC trap-columns to load and inject the sample, circumventing issues of protein solubility and volume loadability in capillary columns (200 μm ID). The low flow rates and use of a dopant gas in the electrospray interface improve protein-ionization efficiencies and reduce suppression by TFA. Overall, this allows the separation and detection of small protein quantities (down to 5 ng injected on column) as indicated by the analysis of a mixture of model proteins. The potential of the new capillary HILIC-MS is demonstrated by the analysis of a complex cell lysate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.